

hg-review documentation

hg-review is a Mercurial [http://hg-scm.org] extension for performing
distributed code review [http://en.wikipedia.org/wiki/Code_review].

“Distributed code review” means you can do cool stuff like this:

[image: hg-review overview diagram]

Quickstart

If you’re impatient and want to play with hg-review right away, here’s what you
need to do.

First, clone the extension somewhere:

hg clone http://bitbucket.org/sjl/hg-review/

Then add it to your ~/.hgrc file:

[extensions]
review = [path to]/hg-review/review/

Now you need a repository that has code review enabled. Luckily, you’ve
already got one – hg-review uses itself for code review.

cd into the directory you cloned hg-review to and start the web interface:

cd hg-review
hg review --web

Open http://localhost:8080/ in your browser of choice and poke around. Check
out the Overview when you’re ready to learn more.

User’s Guide

If you want to use hg-review for anything more than some simple poking around,
this is the place to start.

	Overview
	Installation

	Usage

	Reporting Bugs

	Concepts
	Code Review Basics

	Other Code Review Tools

	Distributed Code Review

	Review Data

	Repository Structure

	Web Interface
	Running Locally

	Deployment to a Server

	Command Line Interface
	review

	--init

	--comment

	--signoff

	--edit

	--check

	--web

Developer’s Guide

If you want to integrate hg-review with your own application or Mercurial
extension, or hack on hg-review itself, this is what you need to know.

	API
	Data Repository Layout

	File Formats

	Command Line Interface

	Internal Python API

	Hacking hg-review
	Rough Guidelines

	Layout

	Testing

	Documentation

	Licensing

Overview

Let’s get started using hg-review. No matter how you want to use it, you need
to install it first.

Installation

hg-review requires Python [http://python.org] 2.5 or later and Mercurial [http://hg-scm.org] 1.6 or later.

You probably have both of these requirements already, but if you encounter
problems you might want to check these first with python --version and
hg --version.

hg-review also depends on a couple of other things like Flask [http://flask.pocoo.org] and Jinja2 [http://jinja.pocoo.org/2/], but it
bundles these requirements so you don’t need to worry about them.

To install hg-review, first clone the extension somewhere:

hg clone http://bitbucket.org/sjl/hg-review/

Then add it to your ~/.hgrc file:

[extensions]
review = [path to]/hg-review/review/

TortoiseHG

People using TortoiseHG on Windows platforms need to update the tortoisehg
library.zip. This is easily done by running the
contrib\windows\update_tortoisehg_libs.py script.

Do to that, you need to have python 2.7 installed:

python contrib\windows\update_tortoisehg_libs.py

Usage

The easiest way to work with hg-review is with the web interface. There’s also a command-line interface, but it’s
easiest to work with the web interface.

If you want to work with a repository that already has code review set up all
you need to do is cd into that repository, and fire up the web ui:

cd ~/src/someproject
hg review --web

Once that’s done you can visit http://localhost:8080/ in your browser to start
reviewing.

You should read over the concepts documentation to make sure
you know how hg-review works and the web interface
documentation for a quick tour of how to use the web UI.

If you want to start using hg-review with a repository, you need to do a few
things to get it ready. You’ll want to end up with something like this:

[image: hg-review basic structure diagram]
First, create a public repository to hold the code review data. This repository
should be in a location that’s accessible by anyone that needs to see the
review data.

For example, if you’re working on an open-source project that’s hosted at
http://bitbucket.org/you/project/ you should create a new repository for
the review data at http://bitbucket.org/you/project-review/

Next you’ll need to initialize the review data in your project. cd into you
project’s directory and run:

hg review --init --remote-path URL

The URL should be the public URL of the review repo you just created.

This command will create a local review data repo for you in .hg/review,
as well as an .hgreview file in your project. You need to commit this
.hgreview file to your project with the command that hg-review suggested.

Don’t worry, this is the only time hg-review will make you commit something to
your project’s repository and clutter up its changelog.

Now you can get to work reviewing changesets with the web interface by
running hg review --web in your project.

You should read over the concepts documentation to make sure
you know how hg-review works, and the web interface
documentation for a quick tour of how to use the web UI.

Reporting Bugs

If you encounter any errors while using hg-review please post a bug [http://bitbucket.org/sjl/hg-review/issues/].

Concepts

You’re not perfect.

Your code is not perfect.

If you’re the only person that’s reading your code, it’s wrong.

As developers we need to review each other’s code. This helps us catch errors
before they find our users. It also makes us take greater care when writing
code because we know someone will be looking at it.

Code Review Basics

The simplest form of code review is asking a friend to look at the code you
just wrote. Often a second set of eyes can find problems you might not have
seen, especially if that person has more experience than you.

Unfortunately this isn’t always practical. You might work remotely with people
thousands of miles away and not have a chance to simply turn around and say:
“Hey, could you look at this?”

Code review tools (like hg-review) exist to make reviewing other people’s code
easier.

Their goal is to make it as easy as possible to tell another developer: “No,
you did this wrong. Fix it.”

Other Code Review Tools

There are a lot of “code review tools” out there.

The primary author of hg-review has a lot of experience with Atlassian
Crucible [http://www.atlassian.com/software/crucible/], but some other
popular tools include:

	Rietveld [http://codereview.appspot.com/]

	Reviewboard [http://www.reviewboard.org/]

	Gerrit [http://code.google.com/p/gerrit/]

	Code Collaborator [http://smartbear.com/codecollab.php]

All of these tools try to accomplish the same goal: making it easy for
developers to tell each other how to write better code.

hg-review has the same goal, but it goes about it a little differently.

Distributed Code Review

Let’s back up for just a second and talk about version control. Some of the
most popular version control systems a few years ago were centralized systems
like Subversion [http://subversion.apache.org/] and
CVS [http://www.nongnu.org/cvs/].

With these systems you had a central server that contained all the history of
your project. You would push changes to this central server and it would store
them.

In the past half-decade or so there has been a move toward decentralized or
distributed version control systems. With these systems you commit to your
local machine and then push and pull your commits to other people.

Code review tools, however, seem to have remained rooted in the “centralized
server” approach. Even the tools that support decentralized version control
systems like git [http://git-scm.com] and Mercurial [http://hg-scm.org]
rely on a central server to store the code review data.

hg-review does away with the “centralized data store” model and embraces
Mercurial’s distributed nature. Code review data is held in a normal Mercurial
repository and can be pushed and pulled like any other type of data.

This has several advantages, the biggest one being that you can review code
while offline without sacrificing any functionality.

It also means that the full power of Mercurial (such as tracking history and
signing changesets with GPG) can be used on the review data.

Review Data

hg-review tracks two kinds of code review data: comments and signoffs.

Comments are simple comments that people make about changesets. People can
comment on:

	A changeset as a whole.

	A specific file within a changeset.

	One or more lines of a specific file within a changeset.

Signoffs, on the other hand, always apply to a changeset as a whole. Each
person can have one signoff for any particular changeset (though they can edit
their signoff later).

Signoffs can be used for whatever purpose your project might find useful, but
the author of hg-review recommends that signoffs of “yes” mean:

I approve of this changeset and think it should make its way to production.

And signoffs of “No” mean:

I do not approve of this changeset and do not think it should make its way to
production without another changeset on top of it that fixes the problems
I have listed.

Signoffs of “neutral” might mean:

This changeset doesn’t really impact me, so I don’t care.

Or perhaps:

I’ve looked at this code but don’t have the expertise to provide a useful
opinion.

Repository Structure

While it’s not necessary to know exactly how the guts of hg-review work, it
is helpful to understand the basic idea behind it.

Let’s say you have a project with a Mercurial repository in
~/src/yourproject/ and you’d like to start using hg-review with it.

The first thing to understand is that Mercurial stores data about this local
repository in ~/src/yourproject/.hg/, and that data is local to your
machine. It is never committed or tracked by Mercurial, but is instead used by
the Mercurial program itself to work with your repository.

hg-review creates a separate Mercurial repository to keep track of its data.
It stores this repository in ~/src/yourproject/.hg/review/.

Because this is inside of Mercurial’s internal .hg directory of your
project changes to the review data (like comments and signoffs) won’t be
tracked in your project’s repository.

hg-review manages its own data in its own repository to avoid cluttering up
your project’s log with useless “added a comment”-type commits.

This structure means that you can cd into the review data repository itself
and interact with it just as you would a normal Mercurial repository. You can
push and pull to and from other people, backout changesets and do
anything else you could with a normal Mercurial repository.

Web Interface

The web interface of hg-review is probably what you’re going to use the most.

Running Locally

To start the web interface for a local repository that you want to review you
can run hg review --web. Visit http://localhost:8080/ to use it.

When you add comments or signoffs hg-review will use your normal Mercurial
username as the author.

This command can take a few extra options:

	--address ADDRESS

	The address to bind to. Use 0.0.0.0 if you want other people to be able
to access it.

Be careful! Because the web interface uses your Mercurial username by
default, binding to 0.0.0.0 will let anyone add comments and signoffs
in your name! You’ll probably want to use the --read-only option to
prevent this.

Default: 127.0.0.1

	--port PORT

	The port to listen on.

Default: 8080

	--read-only

	Run the server in read-only mode. This will not allow data to be pushed or
pulled, comments to be made or signoffs to be added.

This can be useful when combined with --address to let other people
view the UI without letting them add comments in your name.

Default: false

	--allow-anon

	Allow comments (not not signoffs) to be added even if --read-only is
used, and set the username to Anonymous <anonymous@example.com> instead
of your Mercurial username.

This option is most useful when you’re deploying a permanent web interface
to a server and want to allow anonymous viewers to add comments. See the
Deployment to a Server section for more information.

Default: false

Deployment to a Server

Although hg-review is built for distributed code review it’s sometimes nice
to provide a public interface. This will let people can comment easily without
using the extension (or even cloning your project).

Initial Deployment

You can use any WSGI server you like to provide a public instance of hg-review.
Before you start you’ll need to have Mercurial installed on your web server.

Once you’ve got Mercurial running on the server you’ll need to clone copies of
hg-review, your project, and your project’s review data to the web server.
First create a directory where everything will live:

mkdir /var/www/myproject-review-interface/
cd /var/www/myproject-review-interface/

Then grab a copy of hg-review:

hg clone http://bitbucket.org/sjl/hg-review/

Grab a copy of your project and configure it to use the hg-review extension as
well as the built-in fetch [http://mercurial.selenic.com/wiki/FetchExtension] extension (to
automatically merge updates):

hg clone -U http://bitbucket.org/you/yourproject/
cd yourproject

echo '[extensions]' >> .hg/hgrc
echo 'review = /var/www/myproject-review-interface/hg-review/review' >> .hg/hgrc
echo 'fetch = ' >> .hg/hgrc

Use hg-review to pull down the review data:

hg review --init

Now that you’ve got all the necessary data you can set up the WSGI script.
Start by copying the included sample script:

cd /var/www/myproject-review-interface/
cp hg-review/contrib/deploy/wsgi.py wsgi.py

Edit the script to configure your project to your liking. For reference, the
relevant part of the script should look something like this:

An example WSGI script for serving hg-review's web UI.
Edit as necessary.

If hg-review is not on your webserver's PYTHONPATH, uncomment the lines
below and point it at the hg-review directory.
import sys
sys.path.insert(0, "/var/www/myproject-review-interface/hg-review")

REPO = '/var/www/myproject-review-interface/myproject'
READ_ONLY = True
ALLOW_ANON_COMMENTS = False
ANON_USER = 'Anonymous <anonymous@example.com>'
SITE_ROOT = 'http://yoursite.com/optional/path'
TITLE = 'Your Project'
PROJECT_URL = 'http://bitbucket.org/your/project/' # or None

All that’s left is to point your WSGI server at this script and fire it up. How
you do that depends on your WSGI server. A sample configuration file for
Gunicorn [http://gunicorn.org/] is provided in
contrib/deploy/gunicorn.conf.py.

Updating the Data

You’ll want to keep the review data for this interface current so users can see
all the latest comments and signoffs.

To do this you simply need to pull in the main repository (to receive new
changesets in your project) and fetch in the review data repository (to receive
new comments and signoffs):

hg -R /var/www/myproject-review-interface/ pull
hg -R /var/www/myproject-review-interface/.hg/review fetch

New comments and signoffs will be visible immediately – you don’t need to
restart your WSGI server.

You’ll probably want to set this up as a cron job or use a hook of some kind
to automate the updates.

If you allow anonymous comments and want people that are using the extension
locally (instead of this public instance) to see these comments, you’ll need to
fetch and push the review data repo as well:

hg -R /var/www/myproject-review-interface/.hg/review/ fetch
hg -R /var/www/myproject-review-interface/.hg/review/ push

hg-review is designed to never encounter merge conflicts with its data, but
there’s always the chance that someone has done something manually that could
cause a problem.

If your interface doesn’t seem to be receiving new comments/signoffs you’ll
want to take a look at the review data repository to see what’s wrong:

cd /var/www/myproject-review-interface/.hg/review
hg heads

There should only ever be one head in this repository. If there are more you’ll
need to merge them (and push back to your public review data repo so others
won’t encounter the same problem).

Command Line Interface

hg-review provides a command line interface. Except for initializing the review
data, starting the web ui, and possibly some scripting, you’ll probably want to
use the web interface for most tasks.

When you enable the hg-review extension Mercurial will gain a new command:
review. This command on its own will display review data for a changeset,
but it also has several subcommands detailed below.

You can always get help on a given topic right from the command line with
hg help review or hg help review-topic.

review

View code review data for a changeset. Usage:

hg review [-r REV] [-U CONTEXT] [--quiet] [FILE]

Diffs of all changed files will be shown with comments inline.

The line numbers printed are the ones that should be used to add line-level
comments.

Options:

	--unified VALUE

	The number of lines of context to show for diffs in this changeset
(default: 5).

	--rev VALUE

	The revision to show (default: .).

	--quiet

	Do not show diffs – only show review-level comments and signoffs (default:
false).

	--verbose

	Show the short identifier of each comment and signoff, mainly for use with
the edit subcommand (default: false).

	--debug

	Show the full identifier of each comment and signoff, mainly for use with
the edit subcommand (default: false).

--init

Initialize code review for a repository. Usage:

hg review --init --remote-path PATH

When run for the first time in a project, it will do two things:

	Create a new repository to hold the review data at .hg/review/.

	Create and hg add a .hgreview file in the current repository. You
will need to commit this file yourself with: hg commmit .hgreview -m
'initialize code review data'

The --remote-path option is required and specifies the path where the
canonical code review data for this project will live. This is the path that
will be cloned when someone else runs hg review --init on the project.

Options:

	--remote-path VALUE

	The URL to the public code review data repository.

--comment

Add a code review comment for a changeset. Usage:

hg review --comment [-m MESSAGE] [--mdown] [-r REV] [-l LINES] [FILE]

If no files are given the comment will be attached to the changeset as a whole.

If one or more files are given but no lines are given, the comment will be
attached to each file as a whole.

If a file is given and lines are given the comment will be attached to those
specific lines. Lines should be specified as a comma-separated list of line
numbers (as numbered in the output of “hg review”), such as 3 or 2,3.

Options:

	--rev VALUE

	The revision to add a comment to (default: .).

	--lines VALUE

	Comment on the given lines (specified as a comma-separated list of line
numbers) of the file (default: None).

	--message VALUE

	Use VALUE as the comment instead of opening an editor (default:
None (i.e. “open an editor”)).

	--mdown

	Use Markdown to format the comment (default: False).

--signoff

Add a code review signoff for a changeset. Usage:

hg review --signoff [-m MESSAGE] [--mdown] [--yes | --no] [-r REV]

The --yes and --no options can be used to indicate whether you think the
changeset is “good” or “bad”.

It’s up to the collaborators of each individual project to decide exactly what
that means. If neither option is given the signoff will be marked as
“neutral”.

Options:

	--rev VALUE

	The revision to sign off on (default: .).

	--yes

	Sign off as “yes” for the changeset (default: False (i.e. “neutral”)).

	--no

	Sign off as “no” for the changeset (default: False (i.e. “neutral”)).

	--message VALUE

	Use VALUE as the signoff message instead of opening an editor (default:
None (i.e. “open an editor”)).

	--mdown

	Use Markdown to format the signoff message (default: False).

--edit

Edit a comment or signoff. Usage:

hg review --edit IDENTIFIER [--yes | --no] [-m MESSAGE] [-l LINES] [--mdown] [FILE]

Edit the comment or changeset with the given identifier.

You can find the identifier of the item you would like to edit by running hg
review --verbose to display identifiers.

Any other options given (such as --message, --yes or filenames) will
replace the content of the item you edit.

	--message VALUE

	Replace the comment or signoff message with VALUE (default: None (i.e.
“open an editor”)).

	--mdown

	Use Markdown to format the comment or signoff message (default: False
(i.e. “Use the same formatting the item already has)).

	--lines

	The line(s) of the file to comment on (default: None (i.e. “use the
same line the comment already has)). Returns an error if you’re editing
a signoff or a review-level comment.

	--yes

	Change the signoff to state the the changeset is “good” (default:
False). Returns an error if you are not editing a signoff.

	--no

	Change the signoff to state the the changeset is “bad” (default:
False). Returns an error if you are not editing a signoff.

--check

Check the review status of a changeset. Usage:

hg review --check [-r REV] [--no-nos] [--yeses NUM] [--seen]

Check that the given changeset “passes” the given tests of review status. If no
tests are given an error is returned.

Tests are checked in the following order:

	--no-nos

	--yeses

	--seen

If any tests fail the command returns a status of 1 with a message describing
the failure on stderr, otherwise it returns 0 and prints nothing.

	--rev VALUE

	The revision to check (default: .).

	--no-nos

	Ensure this revision does not have any signoffs of “no” (default:
False (i.e. “Don’t perform this check”)).

	--yeses VALUE

	Ensure this revision has at least VALUE signoffs of “yes” (default:
None (i.e. “Don’t perform this check”).

	--seen

	Ensure this revision has at least one comment or signoff (default:
False (i.e. “Don’t perform this check”)).

--web

Start the web interface. Usage:

hg review --web [--read-only] [--allow-anon] [--address ADDRESS] [--port PORT]

Visit http://localhost:8080/ (replace the port number if you specified
a different port) in a modern browser of your choice to use the web interface.

Use Ctrl+C to stop the interface.

Options:

	--read-only

	Make the web interface read-only; disallowing comments, signoffs, pushes
and pulls (default: False).

	--allow-anon

	Allow anonymous comments on the web interface and set the username for
comments to an anonymous username (default: False (i.e. allow comments
and use your Mercurial username)).

	--address VALUE

	Run the web interface on the specified address (default: 127.0.0.1).

	--port VALUE

	Run the web interface on the specified port (default: 8080).

API

hg-review takes Mercurial’s approach to API stability:

	The command line interface is fairly stable and will not break often.

	File formats will not change often.

	The internal implementation may change frequently – there are no guarantees
of stability.

Providing a stable CLI means that (possibly non-GPL) programs can interact with
hg-review easily without fear of constant breaking.

Stable file formats mean that older versions of hg-review will be able to work
with review data from newer versions (albeit with reduced functionality).

Not providing a stable internal implementation allows hg-review’s code to be
kept clean and elegant. It means that Python programs will needs to use
subprocesses to avoid breaking, but this is a tradeoff that the author feels is
worth making.

Data Repository Layout

The structure of hg-review’s data repository looks like this:

your-project/
|
+-- .hg/
| |
| +-- review
| | |
| | +-- {{ changeset hash }}
| | | |
| | | +-- .exists
| | | |
| | | +-- comments
| | | | |
| | | | +-- {{ comment hash }}
| | | | |
| | | | `-- other comments...
| | | |
| | | +-- signoffs
| | | |
| | | +-- {{ signoff hash }}
| | | |
| | | `-- other signoffs ...
| | |
| | `-- other changesets ...
| |
| `-- other files ...
|
`-- other files ...

All review data for a changeset is stored in:

.hg/review/{{ changeset hash }}/

A .exists file is included in that directory when code review for
that changeset is initialized. This allows us to check if a given changeset has
been initialized for code review very quickly.

Comments for a changeset are stored in:

.hg/review/{{ changeset hash }}/comments/{{ comment hash }}

Signoffs for a changeset are stored in:

.hg/review/{{ changeset hash }}/signoffs/{{ signoff hash }}

File Formats

hg-review’s file format is (fairly) stable and is designed to be easily parsed
to enable export to other code review systems.

Comment and signoff files are stored as JSON. The files are indented four
spaces per level to make them more human-readable.

.exists Files

The .exists file is always empty. It simply exists to make looking up
whether a given changeset has been initialized faster. It may go away in the
future – do not depend on it.

Comment Files

Here is a sample comment file:

{
 "author": "Steve Losh <steve@stevelosh.com>",
 "file": [
 "reykjavi\u0301k.txt",
 "cmV5YWphdmnMgWsudHh0"
],
 "hgdate": "Mon Jul 12 23:55:51 2010 -0400",
 "lines": [
 0
],
 "message": "Sample.",
 "node": "0e987f91e9b6628b26a30c5d00668a15fae8f22f",
 "style": "markdown"
}

Comment files have some or all of the following fields:

	author

	The Mercurial username of the person that added this comment.

	file

	A list of two strings. The first string is a (JSON-encoded) representation
of the UTF-8 filename. The second string is a base64 encoded version of the
actual bytes of the filename (which is what Mercurial gives and expects to
receive internally). If this is a review-level comment both strings will be
blank.

	hgdate

	The date and time the comment was added (or last edited).

	lines

	A list of integers representing the lines of the file that this comment
applies to. If this is a file-level or review-level comment the list will
be empty.

	message

	A string representing the raw comment message.

	node

	A string representing the hash of the changset this comment belongs to, for
easy lookup later.

	style

	A string representing the style of this comment – this will be
markdown for Markdown comments and blank for plain-text comments. More
styles may be added in the future.

Signoff Files

Here is a sample signoff file:

{
 "author": "Steve Losh <steve@stevelosh.com>",
 "hgdate": "Tue Jul 13 00:16:00 2010 -0400",
 "message": "Sample.",
 "node": "0e987f91e9b6628b26a30c5d00668a15fae8f22f",
 "opinion": "yes",
 "style": "markdown"
}

Signoff files have some or all of the following fields:

	author

	The Mercurial username of the person that added this comment.

	hgdate

	The date and time the comment was added (or last edited).

	message

	A string representing the raw comment message.

	node

	A string representing the hash of the changset this comment belongs to, for
easy lookup later.

	opinion

	A string representing the signoff opinion. This will be yes, no, or
a blank string (for a neutral signoff).

	style

	A string representing the style of this comment – this will be
markdown for Markdown comments and blank for plain-text comments. More
styles may be added in the future.

Command Line Interface

hg-review’s command line interface is (fairly) stable. If you want to interact
with review data for a repository this is the safest method to use.

See the command line interface documentation for more details.

Internal Python API

hg-review’s internal Python implementation is not stable. It may change at
any time. Relying on it virtually guarantees your application will break at
some point.

For a more stable API you should use the command line interface.

The Python API will be documented later, but is not a high priority at the
moment because of its volatility.

Hacking hg-review

Want to improve hg-review? Great!

The easiest way is to make some changes, push them somewhere public and send
a pull request on Bitbucket (or email Steve).

Rough Guidelines

Here’s a few tips that will make hg-review’s maintainer happier.

Basic Coding Style

Keep lines of code under 85 characters, unless it makes things really ugly.

Indentation is four spaces. Tabs are evil.

Commit Messages

Commit messages should start with a line like:

api: add feature X

The first part is the component the change affects, like api, cli,
web, docs/api, or guts.

guts is a catchall for changesets that affect everything at once – using
it means that the changeset could probably be split up into separate smallet
changesets.

The rest of the commit message should describe the change.

Tests

Update the tests in the same changeset as your change. This makes bisection
by running the test suite easier.

If your changeset changes the CLI output, make sure you’ve read the next
section and then add a test for it in the same changeset.

If your changeset adds a new feature, add a test for it in the same
changeset.

If your changeset fixes a bug, add a test that would reproduce the bug in the
same changeset.

Backwards Compatibility

hg-review’s internal implementation is not stable. Feel free to modify it
however you like. Patches that clean up the code and/or enhance performance
will be gladly accepted.

hg-review’s file format is stable, but new fields may be added at any time.
Removing a field or changing its format is not allowed without a very good
reason. Adding an entirely new file format may be acceptable if there is
a compelling reason.

hg-review’s command line interface is stable. Adding new commands or adding new
options to existing commands is fine if they prove useful. Removing commands or
radically changing the default output of existing commands is not acceptable
except in extreme cases.

hg-review is currently compatible with Python 2.5+ and Mercurial 1.6+. Patches
that break this compatibility will be met with a large dose of skepticism.

Layout

hg-review’s basic structure looks like this:

hg-review/
|
+-- bundled/
| |
| `-- ... bundled third-party modules ...
|
+-- contrib/
| |
| `-- ... useful items not critical to hg-review's core ...
|
+-- docs/
| |
| `-- ... the documentation (and theme) ...
|
+-- review/
| |
| +-- static/
| | |
| | `-- ... static media for the web ui ...
| |
| +-- templates/
| | |
| | `-- ... jinja2 templates for the web ui ...
| |
| +-- tests/
| | |
| | ` ... unit test files and accompanying utilities ...
| |
| +-- api.py # the core hg-review backend
| |
| +-- cli.py # the hg-review Mercurial extension CLI
| |
| +-- messages.py # messages used by the CLI
| |
| +-- helps.py # help text for the CLI commands
| |
| +-- rutil.py # useful utilities
| |
| `-- web.py # the web interface
|
+-- README.markdown
|
+-- LICENSE
|
+-- fabfile.py
|
`-- kick.py

Testing

hg-review contains a test suite for the command line interface (and therefore
the backend API as well).

The tests can be run easily with nose. If you don’t have node, you’ll need to
install it first:

pip install nose

Once you’ve got it you can run the suite by cd’ing to the hg-review directory
and running nosetests.

Before submitting a changeset please make sure it doesn’t break any tests.

If your changeset adds a new feature, add a test for it in the same
changeset.

If your changeset fixes a bug, add a test that would reproduce the bug in the
same changeset.

Documentation

If you want to submit a patch, please update the documentation to reflect your
change (if necessary) in the same changeset.

The documentation is formatted as restructured text and built with Sphinx
(version 0.6.7).

The CSS for the documentation is written with LessCSS. If you want to update
the style you should update the docs/hgreview/static/review.less file and
render it to CSS. Include the changes to the .less file and the .css
file in your changeset.

Licensing

hg-review is distributed under the same license as Mercurial itself: GPL
version 2 or any later version [http://bitbucket.org/sjl/hg-review/src/tip/LICENSE].

If you want to create a program that works with hg-review you should look at
Mercurial’s License FAQ page [http://mercurial.selenic.com/wiki/License] to
learn about how this might affect you.

The basic idea is:

	If you review code with hg-review, you are not affected by the license.

	If you bundle hg-review with another application and don’t change anything,
you are not affected by the license.

	If you create an application that interacts with hg-review solely through its
command line interface or web interface, you are not affected by the license.

	If you create an application that interactes with hg-review by calling its
internal Python API, you are affected by the license and will need to
license your application’s code as GPL version 2 or later.

Note that the last item (using hg-review’s internal Python API) is probably the
one you won’t want to do anyway, since the Python API is not stable.

If you have any questions please email Steve,
but remember that he’s not a lawyer and might not have a fast answer for tricky
questions.

Index

 _static/comment-close.png

_static/up.png

_images/basic.png
Bitbucket, Codbase, etc

Your Public Repository
(e.9.bibucket orglyouyourproject)
our Public Review Repository
(e.0 bitbucketorglyoulyourprojact-review)

Your Machine

Your Repository
(0.9, ~/srcimyproject)

our Review Reposiory
(0.9, ~Istcimyprojecthgireview)

_static/overview.png
Bitbucket, Codbase, etc

Your Machine Cawarker's Machin

_static/basic.png
Bitbucket, Codbase, etc

Your Public Repository
(e.9.bibucket orglyouyourproject)
our Public Review Repository
(e.0 bitbucketorglyoulyourprojact-review)

Your Machine

Your Repository
(0.9, ~/srcimyproject)

our Review Reposiory
(0.9, ~Istcimyprojecthgireview)

_static/minus.png

_static/down-pressed.png

_static/ajax-loader.gif

_images/overview.png
Bitbucket, Codbase, etc

Your Machine Cawarker's Machin

_static/file.png

nav.xhtml

 Table of Contents

 		hg-review documentation

 		Overview

 		Installation

 		TortoiseHG

 		Usage

 		Reporting Bugs

 		Concepts

 		Code Review Basics

 		Other Code Review Tools

 		Distributed Code Review

 		Review Data

 		Repository Structure

 		Web Interface

 		Running Locally

 		Deployment to a Server

 		Initial Deployment

 		Updating the Data

 		Command Line Interface

 		review

 		–init

 		–comment

 		–signoff

 		–edit

 		–check

 		–web

 		API

 		Data Repository Layout

 		File Formats

 		.exists Files

 		Comment Files

 		Signoff Files

 		Command Line Interface

 		Internal Python API

 		Hacking hg-review

 		Rough Guidelines

 		Basic Coding Style

 		Commit Messages

 		Tests

 		Backwards Compatibility

 		Layout

 		Testing

 		Documentation

 		Licensing

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

